Equations & Constants

$$[A] = -kt + [A]_{0} \quad \frac{1}{[A]} = kt + \frac{1}{[A]_{0}} \quad \ln[A] = -kt + \ln[A]_{0} \quad t_{\frac{1}{2}} = \frac{0.693}{k}$$

$$t_{\frac{1}{2}} = \frac{[A]_{0}}{2k} \quad t_{\frac{1}{2}} = \frac{1}{k[A]_{0}} \quad k = Ae^{-E_{a}/RT} \quad \ln(k) = -\frac{E_{a}}{R} \left(\frac{1}{T}\right) + \ln(A) \quad K_{p} = K(RT)^{\Delta n}$$

$$F = ma \quad P = F_{A} \quad P_{1}V_{1} = P_{2}V_{2} \text{ or } P_{1}V_{i} = P_{f}V_{f} \quad \frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}} \quad PV = nRT$$

$$D = \frac{MP}{RT} \quad P_{total} = P_{1} + P_{2} + \cdots \quad X_{x} = \frac{n_{x}}{n_{total}} \quad P_{x} = X_{x}P_{total} \quad P_{total} = \sum_{i} X_{i}P_{i}$$

$$C_{gas} = k_{H}P_{gas} \quad u_{ms} = \sqrt{\frac{3RT}{M}} \quad \frac{u_{x}}{u_{y}} = \sqrt{\frac{M_{y}}{M_{x}}} \quad \frac{r_{x}}{r_{y}} = \sqrt{\frac{M_{y}}{M_{x}}} \quad P = \frac{nRT}{V - nb} - \frac{n^{2}a}{V^{2}}$$

$$\pi = iMRT \quad \Delta T_{b} = iK_{b}m \quad \Delta T_{f} = iK_{f}m \quad 8.314 \frac{J}{mol \cdot K} \quad 0.0821 \frac{L \cdot atm}{mol \cdot K}$$

$$\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} \quad \Delta S_{surr} = -\frac{\Delta H}{T} \quad \Delta G = \Delta H - T\Delta S \quad \Delta G^{\circ} = -RT \ln K$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q \quad \Delta G = -nFE_{cell} \quad \Delta G^{\circ} = -nFE_{cell}^{\circ} \quad E_{cell}^{\circ} = E_{cathode}^{\circ} - E_{anode}^{\circ}$$

$$E_{cell} = E_{cell}^{\circ} - \frac{0.0592}{n} \log Q$$

H 1.008																	He 4.003
Li 6.941	Be 9.012											5 B 10.811	6 C 12.011	$ \stackrel{7}{N}_{14.007} $	8 0 15.999	9 F 18.998	Ne 20.180
Na 22.990	$Mg^{12}_{24.305}$											${\rm Al}^{13}_{26.982}$	Si 28.086	15 P 30.974	16 S 32.066	17 Cl 35.453	18 Ar 39.948
19 K 39.098	$\overset{20}{\text{Ca}}_{_{40.078}}^{20}$	Sc 44.956	22 Ti ^{47.867}	23 V 50.942	Cr 51.996	${\rm Mn}_{54.938}^{25}$	Fe 55.845	27 Co _{58.933}	28 Ni _{58.693}	Cu 63.546	$\overset{30}{\overset{65.39}{Zn}}$	31 Ga 69.723	32 Ge	${\rm \stackrel{33}{As}}_{74.922}$	34 Se 78.96	35 Br _{79.904}	36 Kr 83.30
Rb 85.468	38 Sr 87.62	Y 88.906	${\overset{40}{\rm Zr}}_{^{91.224}}$	Nb 92.906	$M_{95.94}^{42}$	Tc (98)	Ru 101.07	Rh 102.906	Pd 106.42	47 Ag 107.868	Cd	In 114.818	Sn 118.710	Sb 121.760	Te 127.60	53 I 126.904	Xe 131.29
55 Cs 132.902	56 Ba 137.327	La 138.906	$\mathop{\rm Hf}_{178.49}^{72}$	73 Ta 180.948	74 W 183.84	75 Re _{186.207}	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.967	Hg 200.59	81 T1 204.383	Pb 207.2	Bi 208.980	Po (209)	$\mathop{\rm At}_{\scriptscriptstyle{(210)}}^{85}$	Rn (2222)
Fr (223)	88 Ra (226)	89 Ac	Rf (261)	$\mathop{\mathrm{Db}}_{\scriptscriptstyle{(262)}}^{105}$	106 Sg (263)	Bh (262)	$\overset{108}{\mathrm{Hs}}_{\overset{(265)}{}}$	$\mathop{Mt}\limits_{\scriptscriptstyle{(268)}}^{109}$	DS (271)	Rg (272)	Uub	Uut	Uuq	Uup			

58 Ce	59 Pr 140.908	Nd 144.908	Pm (145)	Sm 150.36	63 Eu	64 Gd 157.25	Tb 158.925	Dy 162.50	Ho 164.930	68 Er	Tm 168.934	Yb 173.04	71 Lu 174.967
70 Th	Pa 231.036	92 U 238.029	N_{p}^{93}	94 Pu	Am	Cm	97 Bk	Cf (251)	99 Es	Fm (257)	Md	No (259)	$\mathop{\text{Lr}}_{\scriptscriptstyle{(262)}}^{\scriptscriptstyle{103}}$

Chemistry 1212	Name	
April 16, 2012		
Exam #4		

Write very clearly and **show all of your work** for partial credit. A list of equations and constants as well as a periodic table are on the last two pages of your exam.

- 1. (20 points) Place a correct response in each blank.
- (a.) What is *K* if $\Delta G^{\circ} = 1.2 \times 10^{-2}$?
- (b.) If $\Delta H_{rxn}^{\circ} = -84.9 \, kJ$, what is ΔS_{surr}° in $\frac{J}{K}$?
- (c.) Which law is related to ΔE , q, and w?
- (d.) Is the S_f^0 for graphite zero (yes or no)?
- (e.) Write the line/short notation for the redox reactions given below.
 - i.) $Sn_{(aq)}^{4+} + Tl_{(s)} \Longrightarrow Sn_{(aq)}^{2+} + Tl_{(aq)}^{+}$
 - ii.) $Au_{(aq)}^{3+} + Hg_{(l)} \rightleftharpoons Au_{(aq)}^{+} + Hg_{(aq)}^{+}$
- (uq) (v) (uq)

(f.) What conditions for Gibbs and cell potential will never give a spontaneous process?

- (g.) What do we call the cell described in f.)?
- _____
- (h.) What do we call the process in f.)?
- (i.) What is the n for the cell given in (e.) ii.)?
- (j.) For electrons to flow nonspontaneously is the potential positive or negative?

2. (20 points) Balance the following redox reaction under <u>acidic</u> conditions. Identify which reagent is the oxidizing agent and which is the reducing agent.

$$H_2C_2O_{4(aq)} + BrO_{3(aq)} \to CO_{2(g)} + Br_{2(l)}$$

3.(25 points) Consider the following reaction and corresponding thermodynamic data

$$\begin{split} 2H_2S_{(g)} + SO_{2(g)} &\to 3S_{(s)} + 2H_2O_{(g)} \quad \Delta H_{rxn}^\circ = -154.6 \, kJ \\ S^\circ\left(\frac{J}{mol \cdot K}\right) & 20.5 \quad 264.1 \quad 64.8 \quad 89.9 \\ \Delta_f H^\circ\left(\frac{kJ}{mol}\right) & -256.8 \quad 0 \quad -214.8 \end{split}$$

(a) Determine the heat of formation for $H_2S_{(g)}$. (5pts)

(b) Determine the entropy change for the above reaction. (5pts)

(c) Determine ΔG^0 for the above reaction. (5pts)

(d) Determine the equilibrium constant for the above reaction. (5pts) $\{R = 8.314 \text{ J/K} \cdot \text{mol and } F = 96485 \text{ C/mol}\}$

(e) Is the reaction spontaneous? Why or why not? (5pts)

4. (35 points) Given the data below:

$$BiO_{(aq)}^{+} + 2H_{(aq)}^{+} + 3e^{-} \rightarrow Bi_{(s)} + H_{2}O_{(l)} \qquad E^{o} = 0.32 V$$

$$PbO_{2(s)} + 3H_{(aq)}^{+} + HSO_{4(aq)}^{-} + 2e^{-} \rightarrow PbSO_{4(s)} + 2H_{2}O_{(l)} \qquad E^{o} = 1.628 V$$

- a.) Write the balanced equation for a galvanic cell. (5pts)
- b.) State which half reaction is the cathode and the anode. (5pts)
- c.) State the species which is oxidized and reduced. (5pts)
- d.) State the species which is the oxidizing and reducing agent. (5pts)
- e.) Determine the standard emf, E_{cell}° . (5pts)
- f.) Is the reaction spontaneous? Why? (5pts)
- g.) Determine the emf, E_{cell} , given: $\left[HSO_{4}^{-}\right] = 0.500M$, $\left[Bi^{3+}\right] = 0.250M$, pH = 5 (5pts)